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The neutrotime transcriptional signature defines a
single continuum of neutrophils across biological
compartments
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Neutrophils are implicated in multiple homeostatic and pathological processes, but whether

functional diversity requires discrete neutrophil subsets is not known. Here, we apply single-

cell RNA sequencing to neutrophils from normal and inflamed mouse tissues. Whereas

conventional clustering yields multiple alternative organizational structures, diffusion map-

ping plus RNA velocity discloses a single developmental spectrum, ordered chronologically.

Termed here neutrotime, this spectrum extends from immature pre-neutrophils, largely in

bone marrow, to mature neutrophils predominantly in blood and spleen. The sharpest

increments in neutrotime occur during the transitions from pre-neutrophils to immature

neutrophils and from mature marrow neutrophils to those in blood. Human neutrophils

exhibit a similar transcriptomic pattern. Neutrophils migrating into inflamed mouse lung,

peritoneum and joint maintain the core mature neutrotime signature together with new

transcriptional activity that varies with site and stimulus. Together, these data identify a

single developmental spectrum as the dominant organizational theme of neutrophil

heterogeneity.
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Neutrophils are important innate immune effector cells that
participate in biological processes including immune
defense, tissue repair, cancer, coronary artery disease, and

autoimmunity1,2. Engagement in such a broad array of patho-
physiological conditions suggests corresponding phenotypic het-
erogeneity. Indeed, neutrophils vary greatly with respect to
nuclear morphology, granule contents, buoyancy, surface mar-
kers, and migratory, phagocytic, and suppressor functions3. Yet in
comparison with other immune cells, subsets of neutrophils
remain poorly established, at least in part because it has proven
difficult to distinguish discrete subtypes of neutrophils against the
complex background of differential maturation, priming and
activation. It is therefore unknown whether neutrophils are best
conceptualized as a mélange of subsets or as a phenotypic
continuum.

The organizational structure of the neutrophil population has
practical implications. Neutrophils contribute to multiple immune-
driven diseases, as reflected in the efficacy of neutrophil depletion or
blockade in experimental models4–6. However, the evolutionary
conservation of neutrophils reflects their pivotal contribution to
immune defense and other homeostatic functions, rendering broad-
based neutralization therapeutically unappealing3,7–11. Neutrophil
heterogeneity could provide opportunities to target pathogenic
neutrophil activity, while leaving beneficial functions relatively
undisturbed12. It is thus important to understand the ontological
relationships among neutrophils with divergent phenotypes. In
particular, it is essential to establish whether the neutrophil popu-
lation is characterized by discrete developmental branches, driven
for example by distinct transcription factors, or instead reflects a
single main sequence of neutrophil maturation from which indi-
vidual cells diverge as they encounter environmental exposures.
Single-cell technologies have rapidly emerged as a powerful plat-
form to examine the transcriptional landscape of thousands of cells
simultaneously, offering an unbiased way to study the relationships
within a population13. While a low amount of transcriptome ren-
ders neutrophils challenging to study using this methodology, data
are emerging with respect to developing neutrophils and neu-
trophils from cancerous tissues14–17. Availability of high-resolution
transcriptomic data from neutrophils from healthy donors and
inflamed tissues remains limited.

Here, as part of the Immunological Genome (ImmGen)
Project, we employed droplet-based single-cell RNA-seq
(scRNA-seq) to profile more than 17,000 mouse neutrophils
from bone marrow, blood and spleen as well as from blood,
joint, lung and peritoneum from animals undergoing experi-
mental sterile inflammation. We demonstrate that different
neutrophil states in healthy mice can be projected onto a single
continuum, termed here neutrotime, characterized by clearly
defined poles separated by a smooth transcriptomic shift. Using
RNA velocity, Monocle analysis and transcription factor map-
ping, we show that this main sequence has no major branches.
Human neutrophils exhibit a concordant transcriptomic pat-
tern. Neutrophils from inflamed mouse tissues deviate from
neutrotime in a manner that varies with site and stimulus.
These findings reveal a single developmental continuum as the
dominant organizational theme underlying neutrophil
heterogeneity.

Results
Single-cell RNA-seq in neutrophils is technically feasible. We
sorted Ly6G-positive CD11b-positive neutrophils from bone
marrow, peripheral blood, and spleen of healthy 6–8-week-old
male B6 mice in two independent experiments (Fig. 1a). The sort
strategy for all tissues is shown in Supplementary Fig. 1. ScRNA-
seq was performed using the 10X platform. Hashtag oligomers

were used to multiplex cells across inflammatory conditions
(Supplementary Fig. 2a–d). To eliminate contaminating cells, we
applied a multinomial model to the raw unique molecular iden-
tifier (UMI) counts to assign cells to one of 249 ImmGen refer-
ence populations, excluding cells that belonged to other
recognizable lineages18. Although the lower RNA content of
neutrophils compared to other leukocytes complicates scRNA-
seq19, after rigorous quality control (excluding cells expressing
>5% mitochondrial transcripts, doublets with number of tran-
scripts >99%ile, number of transcripts <1%ile), we could retain
4985 neutrophils from blood, 4504 from bone marrow and 3183
from spleen (12,672 total healthy cells) with a median of 1455
unique molecular identifiers (UMIs) and 515 genes per cell
(Supplementary Fig. 2e–h). Concordance between datasets
enabled pooled analysis (Supplementary Fig. 2i–j). Excluding
transcripts expressed in fewer than five cells, we retained 10,900
robustly expressed transcripts, filtered down to 3322 transcripts
for data integration and downstream analysis using a residual
variance cutoff >1.3.

Neutrophil cluster abundance varies across tissues. To reduce
the dimensionality of this dataset, we employed Uniform Mani-
fold Approximation and Projection (UMAP) clustering based on
the first 20 principal components, using all cells of healthy blood,
bone marrow and spleen. Varying the assumptions of k nearest
neighbors and resolution parameters of the community detection
algorithm within reasonable parameters (k= 20; 100; 500 and
resolution = 0.3; 0.8; 1.5) yielded between 3 and 23 clusters
(Supplementary Fig. 3a). Using the finest clustering, and
inspecting gene expression associated with each cluster, we
eliminated 0.42% of cells from further consideration as debris
because of their concentrated ribosomal and mitochondrial
transcripts (e.g., Rps19, Rps28, mt-Atp6, Rps18, Rpl32, Rpl13, mt-
Co3, and Rpl18a)20,21 (Supplementary Fig. 3b). For population-
level analysis, we selected arbitrarily the 4-cluster model as a
convenient reference (Fig. 1b). Clusters exhibited a recognizable
correlation with neutrophil development, beginning with high
expression of granule genes such as Chil3, Camp, Lcn2, Ltf, and
Mmp9 in population (P) 1 and progressing in P4 to genes asso-
ciated with mature neutrophils, such as Csf3r, encoding the G-
CSF receptor, Il1b, encoding interleukin-1β, and the chemokine-
encoding gene Ccl6 (Fig. 1c)22.

We analyzed the frequency of these clusters across tissues. For
this analysis, we again chose the same 4 populations, although
similar tendencies were identified across models (Supplementary
Fig. 3a, b). We found that P1–P3 were most abundant in the bone
marrow and P4 most abundant in the blood and spleen,
consistent with the expected maturity difference (Fig. 1d–e).

We used the Cyclone algorithm to characterize the distribution
of neutrophils by phase of cell cycle23. As expected, most
neutrophils were not actively cycling. However, cells in P1 (1.66%
of all neutrophils) were skewed strongly toward G2M-like gene
expression (Fig. 1f). This cluster was also distinguished by a more
diverse per-cell transcriptome, with a higher number of detected
genes, a higher number of transcripts, and greater transcriptional
diversity as reflected in the lowest number of counts among the
500 most frequent features (Fig. 1g). Whereas we had pre-
excluded granulocyte-monocyte progenitors (GMP) by mapping
cells to ImmGen reference populations, we explored the
possibility that P1 cells represented proliferation-competent
immediate developmental precursors of neutrophils, recently
described as pre-neutrophils (preNeus)24. Single-cell data char-
acterizing preNeus have not yet been reported. We therefore
obtained published bulk RNA-seq data24 and calculated a gene set
that best differentiated preNeus from GMP, immature and
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mature bone marrow neutrophils, and circulating neutrophils
(Supplementary Fig. 4). We then calculated a gene module score
for each cell in our dataset based on marker genes that were also
robustly expressed in our dataset. This analysis revealed that
P1 cells were most likely preNeus (Fig. 1h). The frequency of
preNeus was highest in bone marrow (3.55%), followed by spleen

(1.01%) and blood (0.10%) (Fig. 1i). Although preNeus were
detected in peripheral blood, their low abundance limited options
for experimental examination. PreNeus exhibited a higher G2M
cell cycle score compared to the remaining neutrophils (Fig. 1j),
and the G2M cell cycle score was similar across tissues, consistent
with their assigned identity (Fig. 1k).
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Given the highly variable number of clusters obtained under a
range of plausible UMAP assumptions, we sought alternate
dimensional reduction strategies. We applied Monocle 3, another
graph-based approach to identify cell trajectories in a low-
dimensional space25. Aside from the small cluster identifiable as
preNeus, Monocle revealed a continuous distribution of neu-
trophils across bone marrow, blood and spleen (Supplementary
Fig. 5a). Broad correspondence between Monocle’s pseudotime
analysis and the clusters identified by UMAP was evident, but
Monocle analysis did not integrate preNeus into the continuum,
inducing us to adopt a diffusion map approach for subsequent
analysis steps (Supplementary Fig. 5a).

Neutrotime defines a continuous chronological spectrum of
neutrophils. The interconnectedness evident by Monocle, toge-
ther with the relative instability of calling distinct clusters within
the UMAP space, led us to consider whether neutrophils could be
depicted more usefully through a continuous model. We there-
fore applied diffusion maps, a dimensional reduction method that
orders cells based on transition probabilities and is sensitive to
branches in the data26–29. Using this strategy, we found that
neutrophils across all tissues could readily be mapped onto a
single spectrum (Fig. 2a). Cells from bone marrow resided at one
end of this continuum, while neutrophils in blood and spleen
clustered at the opposite end, suggesting again a spectrum based
on maturation (Fig. 2b). Neutrophils widely spread across this
spectrum were observed in circulation, consistent with neutrophil
release from healthy marrow at multiple stages of differentiation
(Fig. 2b).

We tested diffusion mapping against UMAP dimensional
reduction by mapping UMAP-defined populations P1–P4 onto
neutrotime, confirming concordance between strategies (Fig. 2c).
Considering the possibility that these clusters represented
accumulation points in neutrophil differentiation, we analyzed
cell abundance along the continuum (Fig. 2d). Most neutrophils
were found at the mature end of the spectrum, with a second
abundance cluster in the less mature middle and a third cluster at
the very immature end, the latter largely in bone marrow and
reflecting preNeus. We applied Hartigan’s Dip Test to a cell-to-
cell distance matrix, as well as to a cell ordering obtained from the
diffusion map, confirming a multimodal distribution (Supple-
mentary Fig. 5d). These results support the model that preNeus
give rise to immature neutrophils that subsequently develop into
mature neutrophils. Application of principal component analysis
paired with a principal curve30 to the primary scRNA-seq data
yielded a similar distribution. Mapping neutrotime onto the
principal curve and vice versa showed high convergence and a
Spearman correlation of 0.955 (Supplementary Fig. 5c). Interest-
ingly, however, 4 groups emerged in the abundance plot. The first
3 groups were largely found in bone marrow (Supplementary
Fig. 5b), suggesting specific accumulation points in early
neutrophil development. Spleen contained neutrophils at all

stages, but featured in particular an abundance of later-stage but
still somewhat immature neutrophils, consistent with in vivo
microscopy findings31. The large majority of neutrophils in the
blood formed a single abundance peak at the highly mature end
of the spectrum, cells that were rare in the marrow, indicating
either that the most mature neutrophils are released rapidly into
the blood or that the final stages of neutrotime-defined
differentiation occur during release and/or in circulation
(Fig. 2d).

To ensure that our analysis had not obscured developmental
branch points, we employed Monocle 3, a machine learning
strategy specialized in the identification of branching within
scRNA-seq data25. Monocle disclosed no evidence for distinct
trajectories of differentiation at the resolution provided by our
dataset (Supplementary Fig. 5a).

Next, we sought to test whether this continuum reflected
chronological order. We began with RNA velocity, a method that
compares unspliced and spliced mRNA to provide an unambig-
uous time vector to transcriptomic data32. RNA velocity vectors
indicated unidirectional progression from one end of the
continuum to the other (Fig. 2e). To provide experimental
confirmation of this temporal sequence, we obtained bulk RNA-
seq data from developing Hoxa9-Lyz-GFP cells (male B6.129
(Cg)-Lyz2tm1.1Graf/Mmmh donor)33. These cells are wild-type
mouse bone marrow cells reversibly immortalized at the myeloid
cell progenitor stage by conditional overexpression of Hoxa9;
when released from developmental blockade, they differentiate
synchronously into mature myeloid cells. We examined expres-
sion of key genes along the continuum as HoxA9 cells became
neutrophils. As expected, between 96 and 120 h, we observed
decreasing expression of early-continuum genes such as Camp,
and Chil3, as well as a decrease in the neutrophil survival factor
Serpinb1, just as in our proposed maturational spectrum. We also
noted increasing expression of late-continuum genes such as Il1b,
Ccl6 and the transcription factor Junb, again supporting the
maturational sequence (Fig. 2f). These results are further
illustrated by comparing the neutrotime score of cells ordered
by rank in neutrotime, a visualization method that disclosed two
discrete increments in neutrotime, corresponding to the transi-
tion from preNeus to immature neutrophils and from more
mature marrow neutrophils to fully mature cells in circulation
(Fig. 2g). Together, these data indicate that the neutrotime
spectrum reflects chronological order and describes a single main
sequence of neutrophil development across healthy bone marrow,
blood and spleen.

Neutrotime is defined by a structured gene expression pro-
gram. We sought to understand the transcriptional changes
associated with progression along neutrotime. We identified the
genes that showed the strongest positive and negative correlations
with neutrotime, independent of source tissue. We found a total
of 48 genes with Spearman correlation greater than 0.25 and 66

Fig. 1 Generating single-cell transcriptomes from neutrophils across multiple biological tissues. a Overview of the experiment. Neutrophils were isolated
from 6–8-week-old B6 mice from blood, bone marrow and spleen, stained for Ly6G and CD11b, and sorted, followed by droplet-based scRNA-seq using the
10X platform. Two independent experiments of healthy tissues were performed with N = 3 mice pooled for each tissue per experiment, totaling N = 12,619
cells, which were combined for analysis. b UMAP plot including all healthy neutrophils, partitioned exemplarily into four populations P1–P4. For smaller or
larger numbers of populations, see Supplementary Fig. 3. c Marker gene expression in the 4-population model. Marker genes were identified by Wilcoxon
Rank Sum test (two-tailed) using the Seurat function “FindAllMarkers” with standard settings; only genes with loge fold change ≥ 0.25 and Bonferroni
adjusted p-value ≤ 0.05 are shown. d UMAP embedding of all cells colored by tissue of origin. e Abundance of populations across organs. Neutrophils
colorized by: G2M cell cycle score (f), percentage of features in top 500 features (g) and preNeu score (h). i Frequency of preNeu across tissues. j G2M
cell cycle score in preNeu and remaining cells in each tissue. Unpaired t-test (two-tailed) between preNeu and all other neutrophils within each tissue.
k G2M cell cycle score of preNeu across tissues. ANOVA followed by unpaired t-test was used to compare the G2M cell cycle score between preNeu and
other neutrophils in each tissue.
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genes with Spearman correlation lower than −0.25 (Fig. 3a). We
then plotted the expression of the top 50 genes that decrease with
neutrotime and the top 50 genes that increase with neutrotime
(Fig. 3b). Consistent with analysis through Monocle and diffusion
map models, gene expression transitioned without discrete
breakpoints from an early program to a late program profile

featuring de novo expression of a distinct gene set. Not all genes
changed in a uniform direction over neutrotime; some, such as
Retnlg encoding Resistin-like gamma precursor, Mmp8 and
Mmp9 encoding the Matrix metalloproteinases 8 and 9, and
Mcemp1 encoding Mast Cell Expressed Membrane Protein 1,
peaked between the poles of neutrotime (Fig. 3c). We further
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Fig. 2 Derivation of a neutrotime signature across biological compartments. a Low-dimensional embedding of neutrophils from bone marrow, blood and
spleen in the same space using a diffusion map-based approach. b Diffusion map for each tissue. c Convergence between UMAP populations P1–P4 and
diffusion map ordering, as well as neutrotime representation on the UMAP embedding. d Relative cell density along neutrotime in each organ. e RNA
velocity vector field on the neutrotime embedding. f Validation of the neutrotime gene signature in developing HoxA9 cells (loge fold change at 96 h and
120 h of differentiation). g Distribution of neutrotime (derived from diffusion map), maturation score (derived from principal component analysis, see
Supplementary Fig. 5a–c) and preNeu score in cells ordered along neutrotime. Lower panel indicates the rolling density of cells in each compartment along
neutrotime. The scale indicated below also serves as legend for other figures in which cells are ordered along neutrotime on the x axis.
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characterized neutrotime progression using gene annotation.
Gene Ontology (GO) terms active early in neutrotime reflected
anabolic functions, including metabolic processes, and defense
response. Gene sets in late neutrotime were dominantly enriched
in cellular responses to the environment, including immune
responses, the cellular response to toxic substances, and gas
transport (Supplementary Fig. 6). Gene Set Enrichment Analysis
(GSEA) similarly indicated enrichment of granule loading with
early neutrotime and effector processes with late neutrotime
(Fig. 3d–f). Many genes in these signatures are common among
actively proliferating cells (neutrophil-specific GSEA terms
highlighted).

Gene expression may follow complex patterns. To identify
these patterns in neutrotime, we performed k-means clustering
on all variable genes (n= 3322) in an expression matrix of log
normalized counts, where cells were ordered by neutrotime score.
We chose k= 10 because this clustering gave a result in which no
group consisted of fewer than five genes. 9 of 10 gene clusters
were informative and followed a uniform distribution; the
remaining cluster, cluster 10, consisted of genes with hetero-
geneous expression dynamics, supporting the number of clusters
chosen (Supplementary Fig. 7). This analysis was able to separate
genes with slow and fast expression dynamics, as well as genes
differing in expression abundance. For example, cluster 2
(including Camp, Ngp, Ltf, Lcn2, Ifitm6, Lyz2, Wfdc21) and
cluster 8 (including Mmp8), featured genes associated with
secondary granules22 and were both associated with early
neutrotime. Cluster 2 peaked earlier and displayed a sharper
decline in expression, whereas genes belonging to cluster 8 were
present further along neutrotime. Thus, the application of the
neutrotime paradigm identifies patterns in gene expression
dynamics as neutrophils mature (Supplementary Fig. 7).

Neutrotime varies across tissues. Analysis of the relative abun-
dance of cells along neutrotime had shown that early neutrotime
is dominated by bone marrow and late neutrotime by blood and
spleen (Fig. 2g). We thus investigated the degree of transcrip-
tional heterogeneity in the dataset introduced by source tissue
versus neutrotime. We binned together cells using a continuous
increase in neutrotime (0.00001), smaller than the smallest dif-
ference of neutrotime between two cells, until at least 5 cells per
tissue and at least 30 cells total were represented in each bin. This
approach yielded a continuous collection of cells in 76 bins. We
then calculated the average gene expression of neutrophils in each
respective bin, separately for each tissue. Visualization of the core
neutrotime transcripts disclosed a remarkable similarity among
expression profiles of key neutrotime genes, irrespective of tissue
(Supplementary Fig. 8). Differences were observed only in few
genes, such as Ly6g (almost no expression in peripheral blood).
Hbb-bs, encoding beta-globin, was detectable primarily in neu-
trophils from peripheral blood, potentially representing cell-free
RNA from erythrocytes, as was recently described to be common
in single-cell experiments34.

Expression of type I interferon-related transcripts varies across
neutrotime. Neutrophils are exquisitely responsive to type I
interferon, as reflected in the prominent transcriptomic impact of
in vivo administration of this cytokine35 (Fig. 4a). Neutrophils
exhibiting transcriptional evidence of interferon response have
been identified in models of cancer and inflammation, although
not previously in healthy mice16,36. Interestingly, neutrotime-
defined maturation was prominently associated with a GSEA
signature for type I interferon response (Fig. 3f). We thus
examined expression of individual genes associated with type I
interferon response along neutrotime (Fig. 4b). Ifitm2 and Ifitm1

increased progressively with neutrotime, Ifitm3 was expressed
throughout neutrotime, and Ifitm6 was expressed preferentially
early in neutrotime (Fig. 4c). By contrast, genes associated with
type II interferon response were low in expression and exhibited
no consistent pattern (Fig. 4d). An attempt to identify a discrete
group of neutrophils by clustering on expression of type I
response genes such as Ifit1, Ifit3, Isg15, and Ifitm3 failed to
identify a subset of cells distinct from the neutrotime spectrum
(Fig. 4e). Instead, genes associated with type I interferon response
in neutrophils peaked at different points along neutrotime
(Fig. 4c, f), suggesting that the expression of interferon target
genes in healthy neutrophils is a dynamic process that evolves
with maturation. Whether this gene expression pattern arises
through direct interferon exposure or by other means, and how
interferon-related transcripts change neutrophil function,
remains to be determined.

Neutrotime can be validated in published mouse bulk sequence
data. To test neutrotime against published data, we used public
bulk RNA-seq data from proliferation-competent, lineage-
committed preNeus (Lin− CD115− SiglecF− CD11b+ Gr1+

cKitint CXCR4+), immature bone marrow neutrophils (Lin−

CD115− SiglecF− CD11b+ Gr1+ cKitlow/neg CXCR4−/low

Ly6Glow/+ CXCR2−), mature bone marrow neutrophils (Lin−

CD115− SiglecF− CD11b+ Gr1+ cKitlow/neg CXCR4−/low Ly6G+

CXCR2+), and mature blood neutrophils (Lin− CD115− SiglecF−

CD11b+ Gr1+ cKitlow/neg CXCR4−/low Ly6G+ CXCR2+) to
define the location of these populations along the neutrotime
spectrum24. Diffusion maps as used to derive neutrotime create a
low-dimensional embedding of the analyzed cells wherein the
contribution of single genes cannot be directly defined. We
therefore generated a simplified version of neutrotime using a
subset of the most informative genes. We first selected genes
profiled in Fig. 3a (Spearman correlation). We next constructed a
cell trajectory within a UMAP embedding created through the
Monocle pipeline and ran Moran’s I, a measure of spatial auto-
correlation, to identify variable factors within a two-dimensional
space37. We then selected genes that displayed high Spearman
correlation with neutrotime, a high rank in Moran’s I, and the
highest expression abundance, retaining only the 100 most
informative genes (Fig. 5a). Each gene was categorized into three
groups based on negative, positive or little correlation to neu-
trotime. We then calculated a simplified neutrotime-S score for
each cell in our original dataset directly from gene expression
space (methods). We tested neutrotime-S against the full neu-
trotime and found a Spearman correlation coefficient of 0.905
(Fig. 5b). We could then calculate a neutrotime-S score for each
population from published data. PreNeus had the lowest neu-
trotime-S, followed by immature bone marrow neutrophils,
mature bone marrow neutrophils, and finally blood neutrophils,
supporting the neutrotime paradigm (Fig. 5c). PreNeus and
immature marrow neutrophils localized closely together by neu-
trotime-S, as did mature marrow neutrophils and mature blood
neutrophils; however, a large gap separated immature and mature
populations, highlighting the marked shift in gene expression that
characterizes this transition (Fig. 5c). Mature neutrophils in the
bone marrow and mature neutrophils in the blood were separated
by a small but distinct increment in neutrotime-S (from 0.9450 to
0.9963). Differential expression analysis identified 981 differen-
tially expressed genes that characterized this transition, high-
lighting that blood neutrophils are distinct from even the most
mature marrow neutrophils (Fig. 5d). Many of the core neu-
trotime genes were among the differentially expressed genes,
including upregulation of Il1b and downregulation of Lcn2,
Retnlg and Ly6g in peripheral blood compared with marrow.
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The neutrotime signature can be detected in human neu-
trophils. To test whether neutrotime translated to human neu-
trophils, we obtained scRNA-seq data from bone marrow
neutrophils in the Human Cell Atlas38, available through
SeuratData39. We manually removed non-neutrophils from the
dataset through dimensionality reduction and clustering based on
expression of marker genes (e.g., GZMB and GNLY for NK cells).
Next, we queried genes with Spearman correlation of neutrotime
≤ 0.25 (early neutrotime genes) and ≥ 0.25 (late neutrotime
genes) for human 1:1 orthologs with high confidence according to
ENSEMBL version 100. A score for early and late neutrotime was
then calculated for each cell and plotted on a UMAP embedding

of enriched neutrophils (Fig. 5d–f). These results confirm that
human neutrophils exhibit a gene expression pattern broadly
consistent with the neutrotime paradigm identified in mice.

Serial expression of transcription factors through neutrotime.
Progression along neutrotime was accompanied by global chan-
ges in gene expression. We tested the possibility that these
changes reflected coordinate gene regulation by specific tran-
scription factors (TFs). Indeed, TF expression evolved over the
course of neutrotime (Fig. 6a, b). To evaluate TF function, we
applied ChIP-X Enrichment Analysis Version 3 (ChEA3), a
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methodology that seeks the signature of specific TFs in the pat-
terns of differentially expressed genes, based on mouse and
human data from ENCODE, ReMap, ARCHS4, GTEx, Enrichr,
and curated results from the literature40. Strong evidence
emerged that different TFs are active in early vs. late neutrotime
(Fig. 6c). Plotting TF activity by ChEA3 against regulated genes,
no single TF emerged as likely to be solely responsible for evo-
lution across neutrotime; rather, different modules of the tran-
scriptional program are likely driven by distinct TFs (Fig. 6d).
Combining raw RNA-seq data with ChEA3 scores, we identified a
remarkably restricted set of TFs that both varied with neutrotime
and exhibited strong ChEA3 scores (Fig. 6e). These results were
robust to the number of genes considered for the ChEA3 calcu-
lation, as extending the list to the top 200 or top 300 genes
highlighted the same TFs (Supplementary Fig. 9). Specifically,
lactoferrin (Ltf, a secondary granule protein but also a known TF)
and Cepbe were strongly active in early in neutrotime. By con-
trast, later neutrotime was characterized by the activity of TFs
encoded by Atf3, Klf2, Cepbb, Junb and Jund. These results are
consistent with available functional data, as illustrated by reci-
procal expression of CCAAT enhancer binding protein (C/EBP)
family members C/EBPε and C/EBPβ in early and late
neutrotime41. Mice lacking C/EBPε display interrupted neu-
trophil maturation, with accumulation of neutrophil precursors
and an absence of morphologically and functionally normal
neutrophils in blood42. By contrast, C/EBPβ facilitates cytokine
production and protection from apoptosis, especially in the
inflamed milieu, capacities befitting late neutrotime43,44. Note
that C/EBPα, another member of this family essential for neu-
trophil development, did not emerge from this analysis, con-
sistent with fulfillment of its role earlier in myelopoiesis,
preceding the preNeu stage45.

Inflammation induces polarization of neutrophils beginning
from neutrotime. To understand how gene expression varies
with inflammation, we sorted neutrophils from mice undergoing
three established models of sterile inflammation: K/BxN serum-
induced arthritis (blood and joint lavage 7 days after i.p.
administration of arthritogenic serum); IL-1β pneumonitis (lung
lavage 3 h after i.n. instillation of 25 ng IL-1β); and IL-1β peri-
tonitis (peritoneal lavage 3 h after i.p. 25 ng IL-1β) (Fig. 7a)6.
Using the same filtering thresholds as for healthy neutrophils,
high-quality scRNA-seq data could be obtained from 801, 2791,
287, and 367 cells from the four compartments, respectively
(Supplementary Fig. 1f). Experiments were performed together
with one of the studies of healthy neutrophils (n= 506 cells), with
simultaneous 10X analysis by hashtagging to mark condition of
origin, facilitating direct comparison across all groups (Supple-
mentary Fig. 1c–f). Healthy and inflamed neutrophils were then
analyzed together. Principal component analysis revealed that
cells from inflamed tissues polarized in two directions, one for
acute IL-1β-induced inflammation (lung or peritoneum) and the
other for subacute K/BxN arthritis (Fig. 7b).

By neutrotime-S, K/BxN blood neutrophils were less mature
than healthy blood neutrophils 0.585 ± 0.003 vs 0.639 ± 0.003
(mean ± standard error of the mean), suggesting early release of
neutrophils in response to tissue inflammation. By contrast,
neutrophils in the joint were more advanced than those in healthy
or arthritic blood (0.647 ± 0.001, mean ± standard error of the
mean), while those from inflamed lung and peritoneum were
relatively immature (0.611 ± 0.005 and 0.584 ± 0.005, mean ±
standard error of the mean), potentially suggesting recruitment of
less mature neutrophils to acutely inflamed tissues (Fig. 7c).
Transcriptional similarity distinguished patterns evident across all
three inflammatory conditions and also patterns that

distinguished acute (lung/peritoneum) from subacute (joint)
inflammation (Fig. 7d). By contrast, neutrophils from healthy
and arthritic blood resembled each other, differing in only 39
transcripts at FDR < 0.01 and a loge fold change of at least 0.25, in
line with the joint focus of inflammation in the K/BxN model
(Fig. 7d). Among these, circulating neutrophils from arthritic
animals displayed greater expression of Retnlg, Lcn2 and Ly6g,
genes associated with relative immaturity. For a detailed analysis
of gene expression changes in all inflammatory conditions see
Supplementary Data 1.

Projecting neutrophils onto a diffusion map confirmed that
healthy and arthritic blood neutrophils clustered together, and
that neutrophils from lung and peritoneum diverged from those
harvested from arthritic joints (Supplementary Fig. 10a–c).
Similar results were obtained in the first two principal
components (Fig. 7b, e). Comparing all three inflamed tissues
to healthy blood, we observed a shared set of up- and down-
regulated genes (Fig. 7d and Supplementary Fig. 10d). Genes with
upregulated expression included the pattern recognition co-factor
Cd14; the chemokines Cxcl2, Ccl4, and Ccl3; Irg1, encoding an
enzyme involved in synthesis of the antibacterial factor itaconic
acid; and ferritin heavy chain (Fth1). Antagonists of IL-1
signaling, Il1r2 and Il1rn, were also upregulated. Using the same
threshold (loge fold change 0.5), genes downregulated across
inflammatory conditions included Tsc22d3, Rsrp1, Tmsb4x,
Myadm and Tmcc1 (Supplementary Fig. 10e). Retnlg, encoding
Resistin-like gamma precursor and F630028O10Rik, an unchar-
acterized protein, were downregulated specifically in neutrophils
from inflamed joints. Mmp9, Rgs2 and Zfp36l2 were down-
regulated in both IL-1β-induced conditions, while Lyz2 and Lst1
were downregulated in IL-1β-induced pneumonitis but not
peritonitis. No genes exclusively downregulated in IL-1β-induced
peritonitis passed the threshold. Thus, neutrophils recruited to
inflamed tissues exhibited substantial overlap in gene expression,
notwithstanding differences in trigger and time course.

Differences between inflamed tissues were also detected. In
particular, neutrophils from the joint differed from those
harvested from lung and peritoneum (Fig. 7b, e). For example,
neutrophils from pneumonitis and peritonitis (as well as healthy
and arthritic blood) exhibited a predominance of Cxcr2, encoding
the receptor for key neutrophil recruitment chemokines KC
(CXCL1) and MIP2 (CXCL2). By contrast, neutrophils from
inflamed joints were skewed toward expression of Cxcr4, a
receptor for CXCL12 that enables return of aged neutrophils to
the marrow but also retention of neutrophils within inflamed
tissues46,47 (Fig. 7f). Intriguingly, IL-1β-inflamed lung and
peritoneum differed from each other in 224 transcripts at FDR
< 0.01 and a loge fold change of at least 0.25, including
overexpression in lung neutrophils of Plaur, Wnk1, Ccr1, Cd300lf,
Cd33, Osm, Nfil3, Id2, Rnasel, Mt1 and Crispld2 and over-
expression in peritoneal neutrophils of Klf2, Ehd1, Tnfaip2,
Marcks, Vasp, Nfkbiz, Rel, Dusp2, Ikbke, Tnip1, Bcl3, Ebi3,
Rnd12810474O19, Rik, Batf, Cxcl10, Nr4a1, Ncf1, and Chil1
(Fig. 7d). Thus, gene expression among neutrophils recruited to
inflamed tissues varies with site of recruitment, even when elicited
by an identical stimulus over an identical interval.

Associations between transcript and protein expression varies
with context. Transcript abundance bears an inconsistent rela-
tionship to the level of a protein expressed. To assess this rela-
tionship within neutrotime genes, we selected 8 genes that
exhibited dynamic transcriptional regulation along neutrotime
and with inflammation (Cd9, Cd14, Cd53, Cd63, Itgam, Cxcr2,
Cxcr4, Ly6g) and compared transcript abundance from our
scRNA-seq data with mean surface expression as measured by
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flow cytometry, expressed as change with respect to healthy blood
neutrophils. As expected, the relationship between transcript and
protein proved highly variable (Supplementary Fig. 11). This
result illustrates the importance of caution in the extrapolation of
transcriptional phenotype to cell function and highlights the
strength of the transcript-only approach to cell ontology as rea-
lized in neutrotime.

Inflammation drives new transcriptional activity in neu-
trophils. We observed marked changes in transcription factor
expression across inflammatory conditions (Fig. 8a). Hmgb2,
encoding a DNA-interacting protein with antimicrobial proper-
ties, was largely restricted to blood neutrophils48. Neutrophils
from acutely inflamed lung and peritoneum upregulated Xbp1
and Nfkb1, implicated in neutrophil effector responses and their
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control49,50. Lung and peritoneum differed in the expression of
TFs including Nfil3, implicated in the control of IL-1β and TNF
production by myeloid cells51. Neutrophils from arthritic joints
expressed Cebpb, Atf3, and Fos. The late-neutrotime gene Cebpb
is the hallmark TF of emergency / reactive granulopoiesis and
modulates cytokine production44,52. Egr1 and Fos are suppressed
by the key neutrophil-differentiation transcription factor GFI-1 in
developing neutrophils; later expression may be involved in
production of mediators including IL-1β53,54. Atf3 participates in
neutrophil migration55. Examining transcription factor regulatory
activity as inferred through ChEA3 again suggested differential
participation of TFs in orchestrating homeostatic and inflamed
gene expression programs (Fig. 8b–c). Plotting transcription
factor activity by ChEA3 against transcript expression, we iden-
tified TFs associated with acute inflammation in response to IL-
1β as well as K/BxN immune-complex arthritis, most promi-
nently Cebpb expression and function in both inflamed condi-
tions (Fig. 8d). This variability among transcriptional programs,
driven by distinct sets of TFs, highlights the dynamic nature of
gene regulation in mature neutrophils as they emerge from a
single neutrotime continuum to assume effector roles in the
tissues.

Discussion
Neutrophils represent an evolutionarily ancient component of
innate immune defense56. Despite considerable morphological
homogeneity, neutrophils are phenotypically diverse, and it has
proven useful to group together neutrophils that share specific
features; examples include low-density granulocytes, N2 / sup-
pressor neutrophils, and pro-angiogenic neutrophils57–59. How-
ever, the ontological relationship among these populations,
sometimes termed neutrophil subtypes, is unknown. In particular,
it is unknown whether there are different kinds of neutrophils, as
NK cells and CD4+ T cells are different kinds of lymphocytes, or
whether phenotypic variation among neutrophils is better
understood as differential maturation and activation within a
single cell type.

To define the underlying organization of the neutrophil
population, we applied single-cell transcriptomics, a method that
has emerged as a powerful tool to study immune cell
heterogeneity13. We studied more than 17,000 sorted neutrophils
from bone marrow, blood and spleen of healthy mice, from
inflammatory exudates in peritoneum and lung, and from both
blood and joint in sterile subacute arthritis. We ordered these
cross-sectional profiles to expose relationships among the phe-
notypes observed. Using distinct modeling strategies, we observed
a consistent organizational logic: the differential transcriptional
signatures of neutrophils reflect a single continuum across tissues,
without major branch points. This continuum converges with

chronological order, as determined through RNA velocity and
from neutrophils differentiated in vitro, leading us to term this
trajectory neutrotime. Our data therefore define a single main
sequence of mouse neutrophil development.

This overall population structure resembles that suggested by
Evrard et al.24, whereby neutrophils progress from proliferation-
competent committed precursors (preNeus) through a non-
proliferating immature stage to mature neutrophils. Cell abun-
dance data further underscore this preNeu/immature/mature
division, identifying accumulation points in neutrophil develop-
ment corresponding to preNeus, nearly mature neutrophils
awaiting transit into blood, and mature circulating neutrophils.
Although neutrophils all along this spectrum can be identified in
marrow, spleen and blood, the distribution changes markedly
with location. In healthy mice, preNeus reside predominantly in
the marrow, though some are encountered in spleen (a known
hematopoietic organ) and rare preNeus appear in the blood.
Spleen neutrophils predominantly reflect the mature end of the
spectrum, though a substantial fraction are less mature than
circulating neutrophils, consistent with in vivo microscopy data31.
Blood neutrophils in healthy mice overwhelmingly occupy the
most mature end of the spectrum. Interestingly, a sharp increase
in neutrotime accompanies the transition from marrow to blood,
suggesting that this transit event or other factors associated with
circulation participate in final neutrophil maturation.

Attention to variation of TF expression and function with
neutrotime demonstrates the extent to which neutrophil devel-
opment is transcriptionally dynamic, including a previously
unappreciated transcriptional program of terminal neutrophil
differentiation. Early neutrotime is under the control of TFs such
as C/EBPε, consistent with the requirement for this TF in the
development of normal mature neutrophils in mice and
humans42,60. Ltf encoding lactoferrin was also prominent in early
neutrotime. A secondary granule protein, lactoferrin is also a
well-recognized TF, binding with high affinity to specific DNA
motifs61,62. The protein sequence of lactoferrin includes a nuclear
localization signal that is highly conserved across mice and
humans, consistent with important transcriptional activity63.
Interestingly, mice lacking lactoferrin display normal early neu-
trophil development, although the respiratory burst is impaired in
mature neutrophils, suggesting redundancy in the control of early
neutrotime64.

Later steps in neutrotime reflect the activity of a distinct group
of TFs including ATF3, KLF2, C/EBPβ, JUNB, and JUND. This
evidence for reciprocal roles for C/EBPε (early neutrotime) and
C/EBPβ (late neutrotime) concord with focused studies of these
TFs42,60. ATF3 facilitates the capacity of neutrophils to migrate
into inflamed tissues55. KLF2 is implicated in neutrophil resis-
tance to apoptosis65. JUNB plays a key role in enhancing

Fig. 7 Neutrophils in acute and subacute inflammation. a Overview of the experimental models. b Combined principal component analysis of healthy and
inflamed neutrophils highlights a divergence between acute IL-1β-induced and subacute (K/BxN serum transfer arthritis) inflammation. N = 17,424 cells
from N = 3 mice per inflamed condition total and N = 3 mice per healthy tissue and per experiment (two independent experiments). c Differences
in neutrotime-S between inflamed compartments. ANOVA followed by Dunnett’s multiple comparison test (two-tailed) compared to healthy blood.
d Heatmap summarizing shared and stimulus-specific gene expression changes in neutrophils. As for Fig. 1c, marker genes were identified by Wilcoxon
Rank Sum test (two-tailed) using the Seurat function “FindAllMarkers” with standard settings; only genes with loge fold change ≥ 0.5 compared to healthy
blood and Bonferroni adjusted p-value ≤ 0.05 were considered. For comparisons that examined changes between multiple groups compared to healthy
blood (e.g. “Inflamed tissues”), as most conservative approach, the highest adjusted p-value was chosen for each gene. e Original neutrotime score in
healthy cells, early and late neutrotime scores in healthy and inflamed cells highlights that the late neutrotime program stays active throughout
inflammation. Lower panels highlight different inflammatory programs in inflamed cells. f Antagonistic expression of Cxcr2 and Cxcr4 in acute versus
subacute inflammation: distribution of Cxcr2 and Cxcr4 expression (loge normalized expression) in healthy and inflamed tissues. Diamonds depict the
median expression value and filled bars on the right illustrate the percentage of cells with non-zero expression. ANOVA was performed on the counts
followed by Dunnett’s multiple comparison test (two-tailed). Percentage of cells with non-zero expression shown as descriptive statistic. ****P < 0.0001
compared to healthy blood; ####P < 0.0001 compared to K/BxN joint.
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neutrophil effector potency as expression of the myeloid differ-
entiation TF PU.1 fades66. In macrophages, JUNB promotes
transcription of Il1b, a hallmark of late neutrotime67. JUND is
similarly implicated in the upregulation of genes related to the
production and processing of IL-1β68. These TFs were identified
by an algorithm that sought TFs exhibiting both transcriptional
variation with neutrotime and evidence of function as disclosed
by ChEA3. Our data do not exclude the possibility that other TFs
may also play key roles in neutrotime, in particular for TFs that
may not be regulated at the transcriptional level. The contribution

of each TF to neutrophil development and function will require
further experimental dissection. Ng, Ostuni and Hidalgo propose
a key role for developmentally-conditioned epigenetic differences,
a fertile hypothesis that remains to be tested3.

To understand the transcriptional correlates of recruitment to
inflamed tissues, we characterized neutrophils from IL-1β peri-
tonitis, IL-1β pneumonitis, and immune-complex arthritis. Gene
expression in neutrophils from all 3 inflamed sites differed
strikingly from that in healthy cells, confirming that circulating
neutrophils remain transcriptionally dynamic. Importantly,

Fig. 8 Transcriptional regulation of acute and subacute inflammation. a Overview of differentially expressed transcription factors in healthy blood and
inflamed compartments. As in Fig. 1c, marker genes for each condition were identified by Wilcoxon Rank Sum test (two-tailed) using the Seurat function
“FindAllMarkers” with standard settings; only genes with loge fold change between conditions ≥ 0.25 and Bonferroni adjusted p value ≤ 0.05 were
considered. The list of marker genes was subsetted to transcription factors to display differentially expressed transcription factors between conditions.
Cells were randomly downsampled to 200 cells per condition for plotting only. b, c Inferred regulatory activity of TFs in IL-1β-induced and K/BxN-induced
inflammation. As ChEA3 contains libraries from multiple species, only the corresponding human protein symbols are shown. d Inferred activity versus
actual expression of TFs in IL-1β polarization and along the K/BxN trajectory in the diffusion map.
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neutrophils recruited to sites of inflammation were generally far
advanced along the neutrotime spectrum, suggesting that these
cells were mature blood neutrophils before tissue entry. Many
transcriptional changes were conserved across all disease condi-
tions, likely reflecting a core transcriptional program engaged by
neutrophils recruited into inflamed sites. This program includes
upregulated genes for CD14, chemokines, and the IL-1 receptor
antagonist. However, neutrophils from inflamed sites also
exhibited considerable heterogeneity depending on experimental
model. Neutrophils elicited over 3 h by instillation of IL-1β into
lung and peritoneum were much more similar to each other than
to those accumulating by day 7 of arthritis. Consistent with the
enhanced lifespan of neutrophils in inflamed tissues, cells har-
vested from inflamed joints were further along the neutrotime
axis, and they also exhibited upregulated Cxcr4 transcript and
CXCR4 protein, recently identified in zebrafish as a receptor
helping to anchor neutrophils in inflamed tissues47. However,
lung and peritoneal neutrophils remained distinguishable from
each other, illustrating the importance of recruitment site to
neutrophil phenotype. These findings are consistent with a recent
survey of neutrophils across bone marrow, blood, spleen, lung,
liver, skin and intestine under homeostatic conditions that found
neutrophils entering different tissues to exhibit distinct sig-
natures, promoted by tissue-specific factors such as CXCL12 in
the lung69.

Prior scRNA-seq studies of neutrophils have focused either on
early development or within the context of tumor or
inflammation16,24,36. By including mature neutrophils in blood
and spleen, our data extend these results, identifying a continuous
evolution of neutrophil gene expression with maturation that
varies further with migration into inflamed sites. Early in neu-
trotime, gene expression is weighted toward anabolic functions
and granule loading, while later in neutrotime effector genes such
as Il1b become predominant. These findings echo early studies of
human neutrophils sorted at distinct developmental stages22. Of
note, a recent study of neutrophils in unperturbed tissues and
with E. coli bacteremia, using graph-based cell clustering to
partition neutrophils into discrete groups, suggested an

alternative model whereby neutrophils can sometimes bypass
certain maturity stages70. Although our findings were otherwise
highly concordant, we did not observe such discontinuities.

We thus propose a working model (Fig. 9) to understand
heterogeneity among neutrophils. Neutrophils represent a single
lineage organized along one main maturational sequence, neu-
trotime. As neutrophils progressing through this continuum
encounter environmental cues, they deviate as a function of site,
stimulus, and time, arriving at a phenotype that likely reflects
both their starting position within neutrotime and the nature and
sequence of signals encountered. For neutrophils recruited to
inflamed sites in the models studied here, these cells primary
emerge from the mature end of the spectrum, but the relative
immaturity of circulating cells observed during inflamed states
suggests that similar phenotypic divergence could occur earlier in
neutrotime as well. This mechanism provides an opportunity to
generate a highly diverse neutrophil repertoire without a
requirement for committed developmental branches or cell sub-
sets. Publicly available data for human neutrophils suggest a
parallel pattern, though the full extent of congruity between
human and mouse neutrophils remains to be determined.

Available through immgen.org via a dedicated visualization
interface, the data presented here provide a public resource to help
understand neutrophil biology. They establish that neutrophils in
healthy mice represent a single developmental continuum, termed
here neutrotime, characterized by continual evolution in gene
expression from preNeus through mature circulating neutrophils.
Further, they illustrate how this transcriptional evolution continues
during recruitment to inflamed sites, varying with factors including
site and stimulus. Together, these results establish a framework to
understand the diverse neutrophil phenotypes observed under
conditions of health and disease.

Methods
Mice, tissue preparation, and creation of single cell suspensions. This study
complied with ethical regulations for animal testing and research and was approved
by the animal welfare committee of the Brigham and Women’s Hospital
(#2016N000535).

Neutrotime Polarization states as function of stimulus, tissue and time

Fig. 9 Proposed working model: neutrotime as the central organizing principle of neutrophil heterogeneity. Healthy neutrophils are organized along one
main sequence, termed neutrotime, from which they deviate as a function of time and environmental cues to reach different polarization states,
orchestrated by shared and context-specific transcription factors. Experimental inflammation was found to recruit neutrophils predominantly near the
mature pole of neutrotime; however, deviation from points earlier in the spectrum is also likely, reflected in arrows all along the neutrotime continuum. The
colors of cells polarizing into different states illustrate that some features of the neutrotime sequence are maintained.
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Male WT C57BL/6 J mice were obtained from The Jackson Laboratory (Stock
No 000664) at age of 5 weeks and housed in SPF conditions for at least one week
prior to the experiment, as per ImmGen protocol (https://www.immgen.org/
Protocols/ImmGen%20Cell%20prep%20and%20sorting%20SOP.pdf). Housing
conditions included temperature between 68 and 75 °F, humidity between 35 and
65% and lights on between 7 AM and 7 PM. Male and female K/BxN mice
expressing the T-cell receptor transgene KRN and the major histocompatibility
complex class II molecule Ag7 were housed in our animal facility at the Brigham
and Women’s Hospital and serum from male and female mice was obtained at age
of 8–11 weeks and pooled. Experiments were approved by the animal care and use
committees of the Brigham and Women’s Hospital. Control mice were harvested at
6 weeks (dataset 1) and 8 weeks (dataset 2). Neutrophils were obtained from the
circulation of healthy anesthetized mice by cardiac puncture: 1 ml of blood was
collected by cardiac puncture in a syringe coated with EDTA (Invitrogen #15575-
038, final concentration of EDTA: 5 mM). Blood, bone marrow and spleen were
obtained from the same mice in each experiment. Following cervical dislocation,
mice were immediately dissected to obtain the spleen and the tibias + femurs. The
spleen was carefully cleaned of any attached fat and lymph nodes and then minced
in a cell culture dish with the sterile back of a syringe to dissociate splenic immune
cells. The dissociated splenic tissue was then passed through a 70-micron filter to
create a single cell suspension. Bone marrow from femurs and tibia was flushed
using 4 °C media to obtain bone marrow suspensions. All tissues were placed
immediately into 4 °C media.

K/BxN serum transfer arthritis. Serum from 8 to 11-week-old K/BxN mice (both
male and female) was pooled and injected intraperitoneally 150 µl into male WT
mice aged 8 weeks on day 0 and day 2. K/BxN mice were obtained by crossing KRN
TCR tg mice (background: C57BL/6) with NOD/Lt mice71. Arthritis was confirmed
clinically and using a caliper to measure thickness of wrists and ankles. Mice were
scored on day 6 (clinical score > 10 on a scale from 0 to 12) and were euthanized on
day 7. Blood from arthritic mice was obtained by cardiac puncture. To obtain
neutrophils from joints, we made a series of incisions on one side of the tibiotalar
joint to allow drainage and then inserted a needle into the other side and flushed
multiple times with cold PBS.

Experimental pneumonitis. Male WT mice aged 8 weeks were anesthetized with
100 mg/kg ketamine (Patterson Veterinary #07-892-5834) and 16 mg/kg xylazine
(Patterson Veterinary #07-808-1947). 25 ng of recombinant Mouse IL-1β (R&D
Systems #401-ML-005/CF) in 30 µL of phosphate-buffered saline (PBS, Corning
#21-040-CV) were administrated intranasally. After 3 h, mice were euthanized and
bronchoalveolar lavage (BAL) was performed using cold PBS as described6.

Experimental peritonitis. Male WT mice aged 8 weeks were injected intraper-
itoneally with 25 ng IL-1β in 200 µL of PBS. After 3 h, mice were euthanized and
peritoneal cells were harvested from the peritoneum with 5 mL of cold PBS as
described6.

Neutrophil isolation. All isolation solutions were at 4 °C to avoid activation of
neutrophils. 4 °C phenol-red free DMEM (Sigma-Aldrich#D1145)+ 0.1% sodium
azide (Sigma-Aldrich #S2002-25G)+ 10 mM HEPES (Gibco #15630-080) + 2%
FCS (GeminiBio BenchMark #100-106) + 5 mM EDTA media was used in all cell
manipulation steps. Single-cell suspensions were gently pelleted at 400 × g for 5 min
at 4 °C and resuspended in 2 ml cold ACK Lysing Buffer (Lonza #10-548E) for
erythrocyte lysis. After 3 min of lysis, medium was added and cells were pelleted at
400 × g for 5 min at 4 °C. Cells were then resuspended in cold media containing
antibodies for staining.

Flow cytometry analysis. Single-cell suspensions from healthy peripheral blood,
bronchoalveolar lavage, peritoneal lavage, arthritic joint and peripheral blood from
arthritic mice were stained using LIVE/DEAD Fixable Blue Dead Cell Stain Kit
(ThermoFisher #L23105) according to the protocol, with subsequent staining on
ice with the respective antibody panel for 30 min (Supplementary Table 1). Neu-
trophils were gated based on FSC-A and SSC-A, doublets excluded in FSC-H vs.
FSC-W and SSC-H vs. SSC-W, live cells selected and Ly6G-positive CD11b-
positive neutrophils gated. Compensation was performed using single-stained
compensation beads (ThermoFisher #A10513) and populations were selected based
on fluorescence minus one (FMO) controls. All used antibodies, catalog numbers
and dilutions and respective flow cytometry panels used are described in detail in
Supplementary Table 1. Flow cytometry files were analyzed using BD FACSDiva
version 8.0.1 and FlowJo version 10.6.1.

Fluorescence activated cell sorting. Prior to sequencing, single-cell suspensions
were stained with anti-mouse Ly6G (clone 1A8)-Alexa Fluor 647 (BioLegend
#127610) and anti-mouse CD11b (clone M1/70)-Brilliant Violet 421™ (BioLegend
#101251) at 1:100 dilution, for 30 min on ice. 10 min before fluorescence-activated
cell sorting, propidium iodide (Sigma-Aldrich #P4170) was added to a final con-
centration of 5 ng/ml. Neutrophils were gated based on FSC-A and SSC-A,
doublets excluded in FSC-H vs. FSC-W and SSC-H vs. SSC-W, propidium iodide

negative live cells and finally Ly6G-positive CD11b-positive neutrophils were
selected. Cutoffs for sorting were determined based on unstained, isotype and
single-stained cells. Cells were sorted directly into PBS with a final concentration of
0.04% BSA (Millipore Sigma #A9647). The sorting strategy is shown in Supple-
mentary Fig. 1a. All steps were performed on ice with cold reagents, and total time
from mouse euthanasia to single cell encapsulation was <2 h.

Droplet-based single-cell RNA-sequencing. Sorted Ly6G-positive CD11b-posi-
tive neutrophils were loaded on a 10X Chromium device, following standard steps
for library preparation, quality control, amplification and sequencing. Single Cell 3’
v2 chemistry was used for datasets with healthy blood, bone marrow and spleen
and v3 chemistry for experimental inflammation. Between 6000 and 12,000 cells
were loaded per experiment and recovery of intact cells was between 20 and 47%
depending on tissue. Average sequencing saturation for the datasets was 90.9%
(range: 85.1–95.5%). Sequencing was performed on an Illumina HiSeq 4000 with
8 bp index read, 28 bp R1, and 96 bp R2 length reads. Reads were demultiplexed
and aligned to the mm10 genome using Cell Ranger software (v1.2.0 for dataset 1,
v2.1.0 for dataset 2 and v3.0.2 for dataset 3). The returned filtered cell barcode and
feature matrices by CellRanger was then used for further analyses in R v3.6.1.

Demultiplexing of hashtag oligo tagged multiplexed samples. In order to
minimize sample to sample variation, neutrophils sorted from K/BxN induced
arthritis (blood and joint), IL-1β induced peritonitis (peritoneal neutrophils), IL-1β
induced pneumonitis (alveolar neutrophils) and healthy control neutrophils from
blood were tagged with hashtag oligonucleotides (TotalSeq™) directed against the
abundantly-expressed CD45 and MHC I (diluted according to manufacturer
instructions to 1.0 µg of antibody in 100 µl of staining buffer for every 1 million
cells):

TotalSeq™-A0301 anti-mouse Hashtag 1 Antibody (BioLegend #155801,
barcode ACCCACCAGTAAGAC, for K/BxN arthritis joint),

TotalSeq™-A0302 anti-mouse Hashtag 2 Antibody (BioLegend #155803,
barcode GGTCGAGAGCATTCA, for K/BxN arthritis blood),

TotalSeq™-A0303 anti-mouse Hashtag 3 Antibody (BioLegend #155805,
barcode CTTGCCGCATGTCAT, for IL-1β induced peritonitis),

TotalSeq™-A0304 anti-mouse Hashtag 4 Antibody (BioLegend #155807,
barcode AAAGCATTCTTCACG, for IL-1β induced pneumonitis),

TotalSeq™-C0305 anti-mouse Hashtag 5 Antibody (BioLegend #155869,
barcode CTTTGTCTTTGTGAG, for healthy blood).

Reads were assigned using Cite-Seq-Count (Roelli et al.72) package with the
HTODemux function to assign HTOs. We detected barcodes from 5976 unique
HTO tagged cells and 5537 distinct UMI barcodes and only retained the intersect
of 5427 events for which both the HTO tag and the cell barcode had been detected.
Only included HTO signals were then normalized using a centered log-ratio (CLR)
transformation and demultiplexed in Seurat using k-means based clustering, a
positive quantile cutoff of 0.999, a seed of 42. Cells were then assigned to one of the
five clusters (n= 4856 cells), as negative (n= 17 cells) or as doublets (n= 554
cells). Doublets and HTO negative cells were excluded. 13,721 genes were detected
in at least one of the remaining cells.

Quality control and processing of single cell RNA-seq data. We took the
CellRanger filtered matrix of i rows representing genes and j columns representing
barcodes (cells) as input. In the first 10X dataset, we detected 4078 cells overall:
1588 (38.9%) cells from blood, 1271 (31.2%) cells from bone marrow and 1219
(29.9%) cells from spleen. Counts with the same gene symbol and different tran-
script IDs were added. A total of 9112 genes were detected in at least one cell. In the
second dataset, we recovered 12,829 cells overall: 4653 (36.3%) cells from blood,
3823 (28.8%) cells from bone marrow and 4353 (33.9%) cells from spleen. A total
of 15,486 genes were detected in at least one cell.

As first step, we ran a cell classifier on the raw count matrix of all three 10X
datasets as in Zemmour et al.18. We used the official ImmGen cell class expression
set (Supplementary Data 2) containing gene expression data from 249 immune cell
populations. We first divided the expression value for each gene within one cell
population by the total expression of all genes within that cell population to obtain
prior probabilities. We then filtered the expression matrix for genes that were
detected in our respective datasets and employed a multinomial model to calculate
the likelihood that each given single cell represents an a priori known ImmGen cell
population. The resulting matrix contained cell barcodes as rows and known cell
types as columns and contained probabilities for each cell being of a specific known
cell type. Each cell was then assigned to its most likely cell type. In the next step,
cell types were summarized as higher lineages. All cells that did not correspond to
any one of the six granulocyte datasets described in ImmGen (GN.Arth.BM, GN.
Arth.SynF, GN.Bl, GN.BM, GN.Thio.PC, GN.UrAc.PC) were discarded. 3754
(92.1%) cells from the first dataset, 9225 (71.9%) cells from the second dataset and
4852 cells (99.9%) from the third dataset were retained for further analysis.

Next, we calculated the most likely cell cycle state for each cell using a curated
list of characteristic transcripts for each cell cycle and an algorithm based on the
pairs method that selects characteristic pairs of genes for each cell cycle phase
whose relative expression difference is positive in the given cell cycle phase and
negative in the other phases23. Cells were assigned to the S, G1, or G2M phase. For
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downstream processing and normalization, we considered the difference between
the S and G2M score of each cell and included it as co-variate to be modeled in the
non-regularized linear regression model.

We then calculated summary statistics reflecting the quality of each cell, such as
the number of detected genes and the number of unique molecular identifiers
(UMIs) and the fraction of UMIs corresponding to mitochondrial features. 15,038
genes were non-zero in the combined three datasets containing 17,831 cells. Cells
with more than 5% mitochondrial transcripts were removed (54 of 17,831) and
cells with no available cell cycle information (5/17,777 cells) were removed. Cells
with a number of unique features above the 99th percentile (1825 genes) were
excluded as they represented possible doublets. Cells with a number of genes below
the 1st percentile (280) were removed due to low quality. Overall, 3584 neutrophils
from the first dataset, 9088 neutrophils from the second dataset and 4752 cells from
the third dataset passed our rigorous quality control, retaining 17,424 cells and
15,038 genes. From cells retained in the analysis, the median number of detected
genes was 515 and the median number of transcripts (UMIs) was 1455. Finally,
only genes expressed in at least 10 cells were retained, so that the final expression
matrix used for downstream analysis consisted of 10,900 genes × 17,424 cells. After
Uniform Manifold Approximation and Projection (UMAP) clustering and
inspection of defining gene expression (Supplementary Fig. 2), 53 debris events
were excluded. The total number of reported cells in our final dataset is
17,371 cells. We found a strong relationship between the number of detected
unique molecular identifiers (UMIs) and the number of detected transcripts
(Supplementary Fig. 1l). There was also high agreement between the average
expression of each gene in both datasets, with a Spearman correlation of 0.863 for
blood, 0.878 for bone marrow and 0.849 for spleen (Supplementary Fig. 1k).

Data alignment. We used regularized negative binomial regression and a recently-
described canonical correlation-based integration workflow, implemented in
Seurat, to obtain a combined expression matrix for the first two datasets encom-
passing healthy cells73. First, we calculated highly variable genes from both datasets
using a residual variance cutoff greater than 1.3, modeling each gene after a
negative binomial regression model encompassing the number of detected UMIs,
the difference between the S and G2M cell cycle score and the percentage of
mitochondrial UMIs as covariates. All highly variable genes from both datasets
were used for integration. We then integrated the two datasets using SCTransform
with L2 normalization on the CCA cell embeddings after dimensional reduction,
again using the same negative binomial regression parameters. 3322 robustly
expressed genes shared between the datasets of healthy cells were retained for
downstream analysis. For cells obtained from experimental inflammation, no
integration had to be performed, as they were all captured on the same 10X run,
and we therefore only applied normalization as detailed above.

Dimensionality reduction by principal component analysis and UMAP. We
used the integrated dataset of all healthy cells to run a combined principal com-
ponent analysis (PCA), computing 50 principal components, of which the first 20
(based on an elbow plot) were used to compute a Uniform Manifold Approx-
imation and Projection (UMAP) embedding of the cells. Next, we clustered cells,
exploring a range of different resolution settings of k= 20/100/500 and resolution
of 0.3/0.8/1.5. Following visual inspection of UMAP plots and resulting heatmaps
with cells separated by cluster identity, we found that a small population of 53 cells
were debris.

Diffusion maps. We used the same twenty principal components as above used to
calculate the UMAP embedding of cells to compute a cell to cell distance matrix,
where the difference between cells was calculated as (1− Pearson correlation). We
used this distance matrix to compute a diffusion map with standard parameters
and density normalization and rotate enabled. We manually chose the preNeu cells
as root cells and extracted pseudotime values along the resulting trajectory. We
scaled and centered the diffusion components 1 and 2 and scaled the pseudotime
values between 0 and 1.

RNA velocity analysis. We processed the fastq files for each experiment into loom
files for each sample using the velocyto v0.17 package32. We then took the resulting
loom file and processed it into both a spliced and unspliced gene by cell matrix.
Using the velocyto R package, we took the most variable genes in each experiment
(found using Seurat) and calculated gene relative velocity RNA estimates using
default settings and a cell nearest neighbor value of 300. These gene estimates were
then visualized on our 2D diffusion map embedding.

Validation of key neutrotime transcripts in Hoxa9 RNA-Seq data. We obtained
a count matrix of RNA-seq data of developing Hoxa9 cells at different time points
after estrogen withdrawal. We used the 25 genes with strongest positive and
strongest negative Spearman correlation with neutrotime and examined their
expression profiles at the time points of 96 and 120 h (representing the last
maturation phase of developing neutrophils). We then computed the average fold
change from 96 to 120 h of these top neutrotime-associated genes in log(x+ 1)
transformed expression values.

Obtaining a preNeu gene score for resting neutrophils. We obtained a raw
RNA-seq count matrix from Evrard et al. (GSE109467) and summed gene
expression for genes with the same symbol and multiple transcript IDs. We used
limma to model each gene as a linear model with samples assigned as either preNeu
or all other groups. We found 386 transcripts with a Benjamini–Hochberg cor-
rected (corresponding to the false discovery rate) p value ≤ 0.05 and an absolute
log2-fold-change ≥ 1.5 that robustly defined preNeus compared to other neutrophil
developing stages.

Gene expression along neutrotime. We used a matrix containing normalized
gene expression from all healthy cells and calculated the spearman correlation
coefficient for all 3322 genes with neutrotime. For visualization, we chose the 50
genes with highest and lowest correlation with neutrotime, respectively. For the
heatmap, we scaled the expression of each gene between 0 and 1. We then
visualized smoothed gene expression along neutrotime for select genes with an
early, intermediate or late peak using generalized additive models with integrated
smoothness estimation (standard settings).

Gene clustering. We used a gene × cell expression matrix of healthy neutrophils
from all tissues from the first two datasets and ordered the cells according to their
neutrotime score. We then performed k-means clustering on this matrix with ten
iterations and k= 10, yielding nine informative clusters and one cluster with 6
remaining heterogeneous genes.

Interferon response in neutrophils. To test the association of neutrophils and
interferons, we first obtained gene expression data from 10 ImmGen cell types
(neutrophils, gamma-delta T cells, CD4 T cells, CD8 T cells, B cells, dendritic cells,
macrophages, NKT cells, NK cells and regulatory T cells) isolated from the spleen
of mice 2 h after subcutaneous injection of 10,000 IU IFN α (Supplementary
Data 3)35. We assigned each gene to a cell type which displayed the highest log2
fold change after IFN stimulation. We ordered the resulting matrix by highest
expression and quantitated the number of highest fold change of genes for each cell
type. We obtained gene sets characterizing Type I interferon response (type I
interferon signaling pathway; GO:0060337) and type II interferon response genes
(interferon-gamma-mediated signaling pathway; GO:0060333). We examined the
expression of these genes along neutrotime. As neutrophils displayed the highest
gene set changing after IFN alpha stimulation, in line with the strong variance of
many type I interferon response genes along neutrotime, we performed principal
component analysis followed by UMAP dimensionality reduction based exclusively
on genes included in GO:0060333. Cells were then colorized by source tissue,
neutrotime and select Type I interferon response genes.

Mapping of datasets onto neutrotime. We selected genes with a Moran’s I score
≥ 0.2 and a mean expression ≥ 0.1 and categorized them into three classes based on
their spearman correlation R with neutrotime: 1. Positively correlated genes (R ≥
0.2; 29 genes; group of genes represented as N+) 2. Negatively correlated genes
(R ≤−0.2; 30 genes; group of genes represented as N−), 3. Stably expressed genes
(−0.1 ≤ R ≤ 0.1; 141 genes; group of genes represented as No).

We recalculated neutrotime directly from gene expression space, where e(g)
represents the expression value e of a gene g:

neutrotimeS score ¼
∑g2Nþ

eðgÞ �∑g2N�
eðgÞ

∑g2N0
eðgÞ ð1Þ

For analysis of single cell transcriptomic data obtained in this manuscript, log-
transformed, normalized counts were used. For visualization in Fig. 5a, only genes
with mean expression ≥ 0.1 (same threshold as above) were shown. We plotted
neutrotime and neutrotime-S against each other and again calculated the Spearman
correlation between the two scores in each individual cell. We performed the same
analysis on RNA-seq data obtained from Evrard et al. (GSE109467) using raw
counts. For statistical testing of neutrophils from inflammation, we first performed
an ANOVA followed by Dunnett’s test for comparing inflamed groups with the
blood control.

Assessing neutrotime in human neutrophils. We obtained human single-cell
RNA-Seq data from 40,000 bone marrow cells from the human cell atlas38,
available through the SeuratData package39. We next integrated the bone marrow
expression data from eight different donors using the same approach illustrated
above under “Data alignment”. Next, we used genes with Spearman correlation
with neutrotime ≤ 0.25 as early neutrotime genes and ≥ 0.25 as late neutrotime
genes and mapped them to human 1:1 orthologs with high confidence using
ENSEMBL version 100 (Supplementary Data 4). Next, we calculated a module
score for early and late neutrotime as described by Tirosh et al.74

Gene set enrichment analysis and GO term analysis along neutrotime. GSEA
was performed using GSEA v4.0.3 (https://www.gsea-msigdb.org/gsea/index.
jsp)75,76. We used a list of genes based on their Spearman correlation with neu-
trotime as a pre-ranked list to run GSEA. All 8 major collections from the
Molecular Signature Database v7.1 were used. The dataset was collapsed to symbols
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using the corresponding Chip platform from the Broad Institute (ftp.broad-
institute.org://pub/gsea/annotations_versioned/Mouse_Gene_Symbol_Re-
mapping_to_Human_Orthologs_MSigDB.v7.1.chip) R was used to create a ranked
list of gene sets that was plotted against false discovery rate (Fig. 3d), alongside with
the normalized enrichment score (Fig. 3e). Significantly enriched genes were sorted
by the absolute value of the normalized enrichment score and colored by the false
discovery rate (Fig. 3f).

Gene ontology enrichment analysis was performed and visualized using the R
package topGO v2.38.177 (Supplementary Fig. 5). The corresponding GO term
accessions were extracted from ENSEMBL v98, genome assembly GRCm38.p6
using the R package BiomaRt v2.42.178,79. The Spearman correlation table was
separated and filtered into a positive (Spearman’s R > 0.2) and a negative
(Spearman’s R <−0.2) list. Gene to GO term mappings were generated as
described by the authors, enrichment tests were performed using the arguments
algorithm=‘classic’, statistic=‘fisher’.

Spatial autocorrelation of genes along neutrotime. Cells and genes were filtered
as described above. We then generated and pre-processed a scRNA-seq dataset
using the R package Monocle3 v0.2.1 as described25,80,81. After pre-processing,
batch correction was performed with fast mutual nearest neighbors correction82

and using the R package batchelor v1.2.4 as described by the authors with few
modifications (cos.norm = FALSE, pc.input = TRUE, k = 5). We calculated the
first 50 principal components and performed dimensional reduction to 2-
dimensional space using UMAP83. Cells were colored by tissue and plotted
(Supplementary Fig. 4). Unsupervised clustering was performed using community
detection with the Leiden algorithm (Levine et al.84 and Traag et al.85) embedded in
monocle. The principal graph was calculated as described by the authors of the
Monocle3 package (Supplementary Fig. 4). We ordered the cells by manually
selecting bone marrow as the start node in the principal graph to color the cells by
pseudotime (Supplementary Fig. 4). In addition, we colored the cells using the
same four clusters as obtained from the UMAP embedding presented in the main
manuscript.

To find genes that vary between groups of cells in UMAP, we applied Moran’s I,
a measure of spatial autocorrelation, which has recently been described to be
effective in single-cell RNA-seq81. Moran’s I was calculated as described by the
authors of Monocle325. The k-nearest neighbor graph was used as input. The
results were then plotted against the genes’ correlations with neutrotime, with size
representing mean expression level (Fig. 5a).

Inferring transcription factor activity. Transcription factors associated with
early- and late-stage neutrotime were predicted using ChIP-X Enrichment Analysis
Version 3 (ChEA3) as described by the authors40. Briefly, gene lists are compared
to 6 annotated TF target libraries including human, mouse and rat data by a
Fisher’s Exact Test with a background size of 20,000. We used the MeanRank
output as the ChEA3-score for downstream analysis. As gene lists, we submitted
the top 100 genes with the highest Spearman correlation with neutrotime as a
representation for late-stage neutrotime and the top 100 genes with the lowest
Spearman correlation with neutrotime as a representation for early-stage neu-
trotime, respectively. The results were robust for variations of gene list lengths
(Supplementary Fig. 7). In addition, we extracted cell trajectories from the IL-1β-
and the K/BxN serum-induced inflammation models, ordered the cells along the
trajectories and extracted the top 100 genes with the highest (most advanced along
the trajectory) and lowest (least advanced in the trajectory) correlation to analyze
the transcription factor activity in a similar way (Fig. 8b–d).

Transcription factor expression along neutrotime. To explore TF expression
along neutrotime, we filtered the expression matrix using a curated list of mouse
TFs (Riken Mouse Transcription Factor Database). We scaled each gene between 0
and 1 for heatmap visualization and ordered all cells along neutrotime. We plotted
smoothed expression of select TFs along cells ordered along neutrotime. To explore
inferred TF regulatory activity in early and late neutrotime, we log-transformed the
multiplicative inverse of each gene’s ChEA3 score for early and late neutrotime and
plotted them against each other. In this analysis, a high value indicates high reg-
ulatory activity and low value indicates a low regulatory activity. We flagged the
overlap of the 50 TFs that displayed the greatest regulatory activity as well as the 50
TFs with greatest activity difference in early neutrotime (n = 18) or in late neu-
trotime (n = 23) and obtained the unique (n = 30) TFs from this analysis for
plotting. A similar analysis was performed using TF activity in cells ordered along
the IL-1 and K/BxN trajectories. We then plotted a binary matrix of regulatory
activity from genes included in the test set as well as their putative TFs to highlight
the diverse TFs driving the gene expression signature along neutrotime. Finally, we
analyzed the inferred TF activity of TFs (ChEA3 score) versus actual TF expression
(Spearman correlation with neutrotime) to identify TFs that are both highly active
as well as expressed on the transcript level.

Computing shared and distinct inflammatory response programs in neu-
trophils. We performed a Wilcoxon rank-sum test on gene expression across all
ten pairwise comparisons of the experimental inflammation data. P values were
corrected using Bonferroni correction with all genes in the dataset. To obtain genes

with a conserved response in inflammation, we selected genes with average fold
change ≥ 0.5 in the conditions to be tested compared to the control conditions. For
heatmap visualization we calculated the average of all cells of each condition.

R analysis packages. R v3.6.1 was used for downstream analysis of single cell
RNA-Sequencing data.

The following packages were used in analysis: batchelor (v1.0.1), biomaRt
(v2.42.1), Biostrings (v2.54.0), ChEA3 (v3), data.table (v1.12.9), DescTools
(0.99.34), destiny (v3.0.1), diptest (v0.75-7), edgeR (v3.28.0), egg (v0.4.5), ggplot2
(v3.3.0), ggrepel (v0.8.2), gridExtra (v2.3), GSEA (v4.0.3), h5 (v0.9.9), leiden
(v0.3.1), limma (v3.42.0), MASS (v7.3-51.5), Matrix (v1.2-18), matrixStats
(v0.56.0), Monocle3 (0.2.1), org.Mm.eg.db (v3.10.0), pheatmap (v1.0.12), princurve
(v2.1.4), RColorBrewer (v1.1-2), readxl (v1.3.1), reshape2 (v1.4.4), scales (v1.1.0),
scater (v1.14.6), scran (v1.14.5), Seurat (v3.1.0), tidyverse (v1.3.0), topGO (v2.38.1),
velocyto.R (v0.6), viridis (v0.5.1).

Flow cytometry files were analyzed using BD FACSDiva version 8.0.1 and
FlowJo version 10.6.1.

Statistics and reproducibility. Unless otherwise indicated, N = 3 mice were
pooled per tissue and per experiment. scRNA-seq studies were performed two times
for healthy tissues (shown in Figs. 1–6 and Supplementary Figs. 3, 5–9) and once for
neutrophils in experimental inflammation (shown in Figs. 7–8 and Supplementary
Fig. 10). Flow cytometry experiments for Supplementary Fig. 11 were performed
with 4–5 biological replicates depending on condition; the average MFI change
relative to healthy blood is shown. Details for the used statistical tests follow:

Figure 1a, b, d, e, f, g, h, i: descriptive analysis. Figure 1c: Marker genes
identified by Wilcoxon Rank Sum test (two-tailed) using the Seurat function
“FindAllMarkers” with standard settings; only genes with loge fold change ≥ 0.25
and Bonferroni adjusted p-value ≤ 0.05 are shown. Figure 1j: Unpaired t-test (two-
tailed) between preNeu and all other neutrophils within each tissue. Figure 1k:
ANOVA followed by unpaired t-test (two-tailed) for all three pairwise comparisons
between tissues (all comparisons not significant).

Figure 2: Descriptive analysis.
Figure 3a–c: Descriptive analysis. Figure 3d–f: Gene Set Enrichment Analysis as

previously described.76 In short, a normalized enrichment score was calculated by
going through a list of genes based on their Spearman correlation with neutrotime
as a pre-ranked list and calculating a running-sum statistic, which was then
normalized for differences in the sizes of the gene sets that were looked at
(normalized enrichment score). To account for multiple hypothesis testing, an FDR
approach was used to maintain a defined level of significance, values < 0.01 were
considered. Figure 4: Descriptive analysis. Figure 5a: Descriptive analysis.
Figure 5b: R indicates the Spearman’s rank correlation coefficient. Figure 5c: One-
way ANOVA (P < 0.0001) followed by Tukey’s multiple comparison test (two-
tailed). Figure 5d: Differential expression analysis. Limma-voom was used to fit a
linear model, calculate empirical Bayes statistics and derive differential expression.
Genes with a log2 fold change threshold of |1| and a Benjamini & Hochberg
adjusted p-value (corresponding to false discovery rate) threshold of ≤ 0.05 were
considered. Figure 5e–g: descriptive analysis. Figure 6: descriptive analysis.
Figure 7a: schematic. Figure 7b, e: descriptive analysis. Figure 7c: ANOVA followed
by Dunnett’s multiple comparison test (two-tailed) compared to healthy blood.
Figure 7d: As for Fig. 1c, marker genes were identified by Wilcoxon Rank Sum test
(two-tailed) using the Seurat function “FindAllMarkers” with standard settings;
only genes with log fold change ≥ 0.5 compared to healthy blood and Bonferroni
adjusted p-value ≤ 0.05 were considered. For comparisons that examined changes
between multiple groups compared to healthy blood (e.g. “Inflamed tissues”), as
most conservative approach, the highest adjusted p-value was chosen for each gene.
Figure 7f: ANOVA followed by Dunnett’s multiple comparison test (two-tailed).
Percentage of cells with non-zero expression shown as descriptive statistic.

Figure 8a: As in Fig. 1c, marker genes for each condition were identified by
Wilcoxon Rank Sum test (two-tailed) using the Seurat function “FindAllMarkers”
with standard settings; only genes with log fold change between conditions ≥ 0.25
and Bonferroni adjusted p-value ≤ 0.05 were considered. The list of marker genes
was subsetted to transcription factors to display differentially expressed
transcription factors between conditions. Cells were randomly downsampled to 200
cells per condition for plotting only.

Figure 9: Schematic representation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Single cell RNA sequencing data have been deposited in the Gene Expression Omnibus
(GEO) database under the accession code GSE165276. Interactive data browsing is
available via the ImmGen single cell explorer. The following publicly available datasets
were used in this study: Riken Mouse Transcription Factor Database (TFdb; http://
genome.gsc.riken.jp/TFdb/) GO terms “Type I interferon signaling pathway” (https://
www.ebi.ac.uk/QuickGO/term/GO:0060337) “Interferon-gamma-mediated signaling
pathway” (https://www.ebi.ac.uk/QuickGO/term/GO:0060333) Evrard et al. bulk RNA-
Seq data (GSE109467) Sykes et al. bulk RNA-Seq data of developing Hoxa9 cells
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(GSE84874) ImmGen class means of 259 unique cell populations (included in this
manuscript as Supplementary Data 2) ImmGen in vivo IFN gene expression change at
2 h (included in this manuscript as Supplementary Data 3). Source data are provided
with this paper. All other data are provided in the article and its Supplementary files or
from the corresponding author upon reasonable request.

Code availability
No custom software was written for this manuscript. Methods describe the used
analytical tools and variables. R code is available from the corresponding author upon
request.
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